Protein aggregation behavior regulates cyclin transcript localization and cell-cycle control.

TitleProtein aggregation behavior regulates cyclin transcript localization and cell-cycle control.
Publication TypeJournal Article
Year of Publication2013
AuthorsC Lee, H Zhang, AE Baker, P Occhipinti, ME Borsuk, and AS Gladfelter
JournalDevelopmental Cell
Volume25
Issue6
Start Page572
Pagination572 - 584
Date Published06/2013
Abstract

Little is known about the active positioning of transcripts outside of embryogenesis or highly polarized cells. We show here that a specific G1 cyclin transcript is highly clustered in the cytoplasm of large multinucleate cells. This heterogeneous cyclin transcript localization results from aggregation of an RNA-binding protein, and deletion of a polyglutamine stretch in this protein results in random transcript localization. These multinucleate cells are remarkable in that nuclei cycle asynchronously despite sharing a common cytoplasm. Notably, randomization of cyclin transcript localization significantly diminishes nucleus-to-nucleus differences in the number of mRNAs and synchronizes cell-cycle timing. Thus, nonrandom cyclin transcript localization is important for cell-cycle timing control and arises due to polyQ-dependent behavior of an RNA-binding protein. There is a widespread association between polyQ expansions and RNA-binding motifs, suggesting that this is a broadly exploited mechanism to produce spatially variable transcripts and heterogeneous cell behaviors. PAPERCLIP:

DOI10.1016/j.devcel.2013.05.007
Short TitleDevelopmental Cell